Learning task-specific similarity
نویسنده
چکیده
The right measure of similarity between examples is important in many areas of computer science. In particular it is a critical component in example-based learning methods. Similarity is commonly defined in terms of a conventional distance function, but such a definition does not necessarily capture the inherent meaning of similarity, which tends to depend on the underlying task. We develop an algorithmic approach to learning similarity from examples of what objects are deemed similar according to the task-specific notion of similarity at hand, as well as optional negative examples. Our learning algorithm constructs, in a greedy fashion, an encoding of the data. This encoding can be seen as an embedding into a space, where a weighted Hamming distance is correlated with the unknown similarity. This allows us to predict when two previously unseen examples are similar and, importantly, to efficiently search a very large database for examples similar to a query. This approach is tested on a set of standard machine learning benchmark problems. The model of similarity learned with our algorithm provides and improvement over standard example-based classification and regression. We also apply this framework to problems in computer vision: articulated pose estimation of humans from single images, articulated tracking in video, and matching image regions subject to generic visual similarity. Thesis Supervisor: Trevor J. Darrell Title: Associate Professor
منابع مشابه
The Comparative Effect of Task Type and Learning Conditions on the Achievement of Specific Target Forms
The completion mode (individual, collaborative) of the tasks and the conditions under which these modes are performed have been reported to play an important role in language learning. The present study aimed to investigate the effects of employing text editing tasks performed both individually and collaboratively, on the achievement of English grammar under explicit and implicit learning condi...
متن کاملOnline Multitask Relative Similarity Learning
Relative similarity learning (RSL) aims to learn similarity functions from data with relative constraints. Most previous algorithms developed for RSL are batch-based learning approaches which suffer from poor scalability when dealing with realworld data arriving sequentially. These methods are often designed to learn a single similarity function for a specific task. Therefore, they may be sub-o...
متن کاملRobust semantic text similarity using LSA, machine learning, and linguistic resources
Semantic textual similarity is a measure of the degree of semantic equivalence between two pieces of text. We describe the SemSim system and its performance in the *SEM 2013 and SemEval-2014 tasks on semantic textual similarity. At the core of our system lies a robust distributional word similarity component that combines Latent Semantic Analysis and machine learning augmented with data from se...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملUNITOR: Combining Semantic Text Similarity functions through SV Regression
This paper presents the UNITOR system that participated to the SemEval 2012 Task 6: Semantic Textual Similarity (STS). The task is here modeled as a Support Vector (SV) regression problem, where a similarity scoring function between text pairs is acquired from examples. The semantic relatedness between sentences is modeled in an unsupervised fashion through different similarity functions, each ...
متن کامل